

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2018
Lab 13 – Dictionaries

Assignment: Lab 13 – Dictionaries
Due Date: During discussion, April 30th through May 3rd
Value: 10 points (8 points during lab, 2 points for Pre Lab quiz)

This week’s lab will give you practice with using dictionaries.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Dictionaries

A very useful data type available in Python is the dictionary. Dictionaries are
sometimes found in other languages as “associative memories” or “associative
arrays.” Dictionaries are data structures that map a key to a value. So, in the
example below, we have a dictionary that maps the key ‘a’ to the value

‘alpha’; the key ‘o’ to the value ‘omega’; and the key ‘g’ to the value ‘gamma’.

(Image from https://developers.google.com/edu/python/dict-files)

We can create this dictionary with this line of code:

greek = {"a": "alpha", "o": "omega", "g": "gamma"}

Dictionaries may look a lot like lists, but there are a few key differences:

1. A dictionary uses curly braces instead of square brackets
2. A dictionary is made up of (key, value) pairs
3. The key and value are separated by a colon (:)

4. The keys must be unique (just like the indexes of a list are unique)
a. The keys can only be immutable data types

Lists are indexed by order, which we see as a range of numbers. Dictionaries
are indexed by association, or their key values. Keys can be any immutable
type, and every key in a dictionary must be unique. Strings, floats, and
integers are common choices for a key.

https://developers.google.com/edu/python/dict-files
https://developers.google.com/edu/python/dict-files

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Dictionary Functions
We can start by looking at how we could create a simple dictionary. Let’s
create a new dictionary called animals.

animals = {"Clifford" : "dog", "Hedwig" : "owl",

 "George" : "monkey", "Kha" : "snake",

 "Laika" : "dog"}

In this dictionary, we have mapped famous animals, using their name as the
key, and their species as the value. Since there may be multiple animals of the
same species (e.g., Clifford and Laika are both dogs), it makes sense to use
the unique value (the name) as the key.

Using a dictionary, we can perform a number of operations. The examples
below use the animals dictionary defined above.

A. Iterate through the dictionary:

keys = list(animals.keys())

for i in range(len(keys)):

 print(keys[i], "is a famous", \

 animals[keys[i]])

OUTPUT:

Laika is a famous dog

George is a famous monkey

(and so on)

B. Access a specific entry:
print("Kha is the", animals["Kha"], \

 "from 'The Jungle Book'")

OUTPUT:

Kha is the snake from 'The Jungle Book'

C. Safely access a specific entry:

print("Kha is the", animals.get("Kha"), \

 "from 'The Jungle Book'")

if there was no "Kha" key, this would simply

print out None, rather than crashing

CMSC 201 – Computer Science I for Majors Page 4

D. Add something to the dictionary:

animals["Punxsutawney Phil"] = "groundhog"

E. Updating the value of something in the dictionary:

animals["Hedwig"] = "snowy owl"

F. Deleting something from the dictionary:

Laika was a Soviet space dog, the first

animal to orbit the Earth. She did not

survive more than a few hours in space. :(

del animals["Laika"]

G. Checking if a key is present in the dictionary:

"Laika" in animals

this will return False, as Laika's no longer in

the dictionary

"Clifford" in animals

this will return True

H. Dictionaries also have methods that enable some additional functionality.

In addition to the commands and examples above, here are some of the
more helpful methods we can use.

These both return a “view” by default, so we must cast them to a list to
use them.

a. list(animals.values())

Returns a list of the values in dictionary animals
['groundhog', 'snowy owl', 'monkey', 'dog',

 'snake']

b. list(animals.keys())

Returns a list of the keys in dictionary animals
['Punxsutawney Phil', 'Hedwig', 'George',

 'Clifford', 'Kha']

CMSC 201 – Computer Science I for Majors Page 5

Part 1C: New Material – Lists as Values

Although we didn’t discuss it in detail during class, it is possible to use lists as
the value in a (key, value) pair, and to update the list as new items are entered
that belong with that key. In order to do so, though, we must pay attention to
and handle two different scenarios:

1. The key does not yet exist in the dictionary
a. We must create a new key and start the list from scratch

2. The key already exists in the dictionary
a. We must append to the existing list, without overwriting it

To accomplish these, the first thing to do is use the .get() function to

access a key’s value. The .get() function is safer than square brackets,

because if the key does not exist it will return None (where square brackets

would cause an error).

If we see that the key already exists, we can create a key:value pair with a
single element list for the value. If it does already exist, we simply append to
the existing list. For example, code to accomplish that might look like the
following.

if the key doesn't already exist in the dictionary

if myDict.get(theKey) == None:

 myDict[theKey] = [newValue]

else:

 myDict[theKey].append(newValue)

And when we want to access something in the list of values, we’ll need to first
index into the dictionary (using the key) and then into the list (using regular
indexes).

print all the elements of a key's value list

valueList = myDict[knownKey]

for i in range(len(valueList)):

 print(valueList[i])

CMSC 201 – Computer Science I for Majors Page 6

Part 2: Exercise
In this lab, you’ll be downloading the start of a program that uses a dictionary
to store information about Pokémon and the list of moves each of them has.

Tasks

Starting:
 Copy the given_pokeQuery.py file from Dr. Gibson’s pub directory

 It should have been renamed to be pokeQuery.py

 Copy the pokedex.txt file from Dr. Gibson’s pub directory

Programming:
 Open the file and examine the code
 Complete each of the following functions:

 createPokeDex(), which should store the data in a dictionary

 checkMoveExists(), which should check to see if each

Pokémon has a specific move
 main(), which should call the checkMoveExists() function, and

handle the result correctly
General:
 Run and test your code as needed
 Show your work to your TA

If you get stuck, don’t forget what you learned in Lab 09!

Remember, a “debug statement” is a print() statement that gives you more

information on what exactly is going on. Placing a print() statement inside

your code, can show you what is going on in the "background" of your
program. Each time the code is run, the information in your debug statement
will be printed to the screen, allowing you to trace what is happening with your
program.
For example, you might want to see what the current dictionary looks like, or
what the recursive function is being given as parameters.

CMSC 201 – Computer Science I for Majors Page 7

Part 3A: Downloading the File

First, create the lab13 folder using the mkdir command – the folder needs

to be inside your Labs folder as well.

Next, copy a file into your lab13 folder using the cp command. (The

command should be all on one line.)

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/given_pokeQuery.py

pokeQuery.py

This will copy the file given_pokeQuery.py from Dr. Gibson’s public folder

into your current folder, and will change the file’s name to pokeQuery.py

instead.

You will also need to copy the pokedex.txt file, in which all of the

information about the different Pokémon is stored. Don’t forget the period at
the end!

cp /afs/umbc.edu/users/k/k/k38/pub/cs201/pokedex.txt .

The first thing you should do in your file is complete the file header comment,
filling in your name, section number, email, and the date.

CMSC 201 – Computer Science I for Majors Page 8

Part 3B: Completing the Program
For Lab 13, you will be implementing an application that will allow the user to
search for all Pokémon inside of their Storage System that have a certain
move (which will be entered in).

The file contains every Pokémon (151 Generation One Pokémon) that the user
owns. You should open up the text file and examine its contents and how it is
formatted.

Follow the instructions inside the pokeQuery.py file to complete the lab.

However, here are some hints:

 It is important to look at the layout of the text file AND read
the function headers to understand what to do.

 The name of each Pokémon should be used as a key.

 The move set should be turned into a list and then assigned
as a value for that Pokémon.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 9

Here is some sample output of the program, with the user input in blue.

bash-4.1$ python pokeQuery.py

 Hello, and welcome to your Pokemon Storage System!

 Would you like to search your box for all Pokemon

 that possess a specified move?

Please enter a move (type 'STOP' to finish): Whine

You do not have any Pokemon that know Whine

Please enter a move (type 'STOP' to finish): Bark

You do not have any Pokemon that know Bark

Please enter a move (type 'STOP' to finish): Boof

You do not have any Pokemon that know Boof

Please enter a move (type 'STOP' to finish): Woof

You do not have any Pokemon that know Woof

Please enter a move (type 'STOP' to finish): Howl

You do not have any Pokemon that know Howl

Please enter a move (type 'STOP' to finish): Slobber

You do not have any Pokemon that know Slobber

Please enter a move (type 'STOP' to finish): FireFang

>> You have a Arcanine that knows FireFang

You have 1 Pokemon that know FireFang

Please enter a move (type 'STOP' to finish): Lick

>> You have a Jynx that knows Lick

>> You have a Gengar that knows Lick

>> You have a Ditto that knows Lick

>> You have a Haunter that knows Lick

>> You have a Lickitung that knows Lick

>> You have a Gastly that knows Lick

You have 6 Pokemon that know Lick

Please enter a move (type 'STOP' to finish): STOP

Shutting Down...

(See more sample output, showing a longer run, on the following page.)

CMSC 201 – Computer Science I for Majors Page 10

Here is more sample output of the program, with the user input in blue.

bash-4.1$ python pokeQuery.py

 Hello, and welcome to your Pokemon Storage System!

 Would you like to search your box for all Pokemon

 that possess a specified move?

Please enter a move (type 'STOP' to finish): Bubble

>> You have a Poliwhirl that knows Bubble

>> You have a Horsea that knows Bubble

>> You have a Kingler that knows Bubble

>> You have a Squirtle that knows Bubble

>> You have a Poliwrath that knows Bubble

>> You have a Poliwag that knows Bubble

>> You have a Krabby that knows Bubble

>> You have a Seadra that knows Bubble

You have 8 Pokemon that know Bubble

Please enter a move (type 'STOP' to finish): Gust

>> You have a Zapdos that knows Gust

>> You have a Pidgey that knows Gust

>> You have a Pidgeotto that knows Gust

>> You have a Spearow that knows Gust

>> You have a Fearow that knows Gust

>> You have a Butterfree that knows Gust

>> You have a Moltres that knows Gust

>> You have a Articuno that knows Gust

You have 8 Pokemon that know Gust

Please enter a move (type 'STOP' to finish): STOP

Shutting Down...

CMSC 201 – Computer Science I for Majors Page 11

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

Tasks

Starting:
 Copy the given_pokeQuery.py file from Dr. Gibson’s pub directory

 It should have been renamed to be pokeQuery.py

 Copy the pokedex.txt file from Dr. Gibson’s pub directory

Programming:
 Open the file and examine the code
 Complete each of the following functions:

 createPokeDex(), which should store the data in a dictionary

 checkMoveExists(), which should check to see if each

Pokémon has a specific move
 main(), which should call the checkMoveExists() function, and

handle the result correctly
General:
 Run and test your code as needed
 Show your work to your TA

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

